Wave Equation
wave 2d mouse
Background circle with 3 oscillators with prime frequency. Click the mouse for high frequency oscillations.
// This work is licensed under CC BY 4.0
// https://creativecommons.org/licenses/by/4.0/
struct Sys {
time: f32,
resolution: vec2<f32>,
mouse: vec4<f32>,
aspect: vec2<f32>,
buttons: vec3<f32>,
frame: u32
};
struct Uni {
size: vec2<f32>,
amplitude: f32,
frequency: f32,
osc: array<Oscillators,3>
}
struct Oscillators {
amplitude: f32,
frequency: f32,
position: vec2<i32>
}
struct VertexInput {
@location(0) pos: vec2<f32>,
@builtin(instance_index) instance: u32
};
struct VertexOutput {
@builtin(position) pos: vec4f,
@location(0) state: f32
}
@group(0) @binding(0) var<uniform> uni: Uni;
@group(0) @binding(4) var<uniform> sys: Sys;
@group(0) @binding(1) var<storage> current: array<f32>;
@group(0) @binding(2) var<storage, read_write> next: array<f32>;
@vertex
fn vertexMain(input : VertexInput) -> VertexOutput {
let i = f32(input.instance);
let cell = vec2f(i % uni.size.x, floor(i / uni.size.x));
// each pixel in the simulation is represented bay a instance square
let state = f32(current[input.instance]);
let cellSize = 2. / uni.size.xy ;
// The cell(0,0) is a the top left corner of the screen.
// The cell(uni.size.x,uni.size.y) is a the bottom right corner of the screen.
let cellOffset = vec2(cell.x, uni.size.y - 1. - cell.y) * cellSize + (cellSize * .5) ;
// input.pos is in the range [-1,1]...[1,1] and it's the same coord system as the uv of the screen
let cellPos = (input.pos / uni.size.xy) + cellOffset - 1.;
var output: VertexOutput;
output.pos = vec4f(cellPos, 0., 1.);
output.state = state;
return output;
}
@fragment
fn fragmentMain( input: VertexOutput) -> @location(0) vec4f {
// use the wave phase as a color hue
return vec4( tosRGB( hsv2rgb(vec3( abs(input.state)*.1 + .66 , .9, .1 )) ) ,1.0) ;
}
// Mehrstellen 9 point stencil laplace operator
const K_LAPLACE9 = array<f32,9>(.1666666, .6666666, .1666666, .6666666, -3.3333333, .6666666, .1666666, .6666666, .1666666);
@compute @workgroup_size(8, 8)
fn computeWave(@builtin(global_invocation_id) cell: vec3u) {
// keep the simulation in the range [0,size]
if (cell.x >= u32(uni.size.x) || cell.y >= u32(uni.size.y)) { return; }
let size = vec2i(uni.size);
let pos = vec2i(cell.xy);
let m = vec2i(sys.mouse.xy * uni.size );
// Wave equation parameters
let dt = 1.; // time step
let damping = .999; // wave damping
let c = 1. / (sqrt(2.) * dt) ; // wave speed, Courant-Friedrichs-Lewy (CFL) condition
// current cell index
let index = pos.y * size.x + pos.x;
// we switch buffers each frame, so the previous value is in the next buffer.
let previous = next[index];
// boundary condition
let circle = abs(length(vec2f(pos) - vec2f(size/2)) - f32(size.y)/2.5) - 1. < 0.;
if (!circle) {
// calculate the laplacian
var laplacian: f32 = 0.0;
for(var i = 0; i < 9; i++) {
let offset = (vec2i( (i / 3) - 1, (i % 3) - 1 ) + pos + size) % size;
laplacian += K_LAPLACE9[i] * current[offset.y * size.x + offset.x];
}
// wave equation, finite elements method
next[index] = 2.0 * current[index] - previous + c * c * dt * dt * laplacian;
//next[index] *= damping;
// add oscillators perturbation to the field
for (var i=0; i < 3; i++) {
let o = uni.osc[i];
next[ o.position.y * size.x + o.position.x ] = o.amplitude * sin(o.frequency * sys.time);
}
// add mouse click perturbation
if (sys.buttons.x == 1.) {
next[ m.y * size.x + m.x] = uni.amplitude * sin(uni.frequency * sys.time);
}
}
}
// converts from HSV to RGB
fn hsv2rgb(c :vec3f) -> vec3f {
let k = vec4f(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
let p = abs(fract(c.xxx + k.xyz) * 6.0 - k.www);
return c.z * mix(k.xxx, clamp(p - k.xxx, vec3(0.0), vec3(1.0)), c.y);
}
// Converts a color from linear light gamma to sRGB gamma
fn tosRGB(linearRGB: vec3f) -> vec3f {
let cutoff = vec3<bool>(linearRGB.x < 0.0031308, linearRGB.y < 0.0031308, linearRGB.z < 0.0031308);
let higher = vec3(1.055) * pow(linearRGB.rgb, vec3(1.0/2.4)) - vec3(0.055);
let lower = linearRGB.rgb * vec3(12.92);
return vec3<f32>(mix(higher, lower, vec3<f32>(cutoff)));
}
import { PSpec, Definitions, scaleAspect, square } from "../../lib/poiesis/index.ts";
export const wave = (code: string,defs: Definitions ) => {
return (w:number, h: number): PSpec => {
const size = scaleAspect(w,h,512);
const current = Array.from({ length: size.x*size.y }, () => 0);
return {
code: code,
defs: defs,
geometry: {
vertex: {
data: square(1.),
attributes: ["pos"],
instances: size.x * size.y
}
},
uniforms: () => ({
uni: {
size: [size.x, size.y],
frequency: 13,
amplitude: 20,
osc: [
{ amplitude: 3, frequency: 7, position: [size.x/2 - 40,size.y/2 + 100] },
{ amplitude: 1, frequency: 5, position: [size.x/2 - 100,size.y/2 - 70] },
{ amplitude: 2, frequency: 2, position: [size.x/2 + 140,size.y/2 - 40] }
]
}
}),
storages: [
{ name: "current", size: current.length, data: current } ,
{ name: "next", size: current.length }
],
computes: [
{ name: "computeWave", workgroups: [Math.ceil(size.x / 8), Math.ceil(size.y / 8), 1] },
],
bindings: [ [0,4,1,2], [0,4,2,1] ]
}
};
}